Homework \#10 (100 points) - Show all work on the following problems:
(Grading rubric: Solid attempt $=50 \%$ credit, Correct approach but errors $=75 \%$ credit, Correct original solution $=100 \%$ credit, Copy of online solutions $=0 \%$ credit $)$

Problem 1 (20 points): A boat has a mast that is tipped backward from vertical, making an angle of $\theta$ with respect to the horizontal deck. If the boat travels at relativistic speed $v$ past a dock, what angle between the mast and the deck does a stationary observer on the dock report?

Problem 2 (20 points): Solve the Lorentz transformations for $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ in terms of $x, y, t, z$ (Eq. 12.18) to obtain the reverse transformation for $x, y, t, z$ in terms of $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ (Eq. 12.19).

Problem 3 (40 points): In reference frame $S$, a static uniform line charge $\lambda$ extends along the z -axis.

3a (10 points). Write the electric field in $S$, in Cartesian coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$.
3b (10 points). Find the electric field in a frame $S^{\prime}$ that moves with speed $u$ in the xdirection with respect to $S$, in terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

3c (10 points). Express your answer in terms of the $S^{\prime}$ coordinates $x^{\prime}, y^{\prime}, z^{\prime}$.
3d (10 points). Express your answer in terms of a vector from the present location of the wire, and the angle $\theta$ between that vector and a unit vector in the $x^{\prime}$ direction. Is the field still radially outward from the instantaneous location of the wire?

## Problem 4 (20 points):

4a (10 points). Show that the dot product between the electric and magnetic fields is invariant (i.e. does not change under transformations between reference frames).

4b (10 points). Show that the quantity $\left(E^{2}-c^{2} B^{2}\right)$ is invariant.

