Homework #10 (100 points) - Show all work on the following problems: (Grading rubric: Solid attempt = 50% credit, Correct approach but errors = 75% credit, Correct original solution = 100% credit, Copy of online solutions = 0% credit)

Problem 1 (20 points): A boat has a mast that is tipped backward from vertical, making an angle of θ with respect to the horizontal deck. If the boat travels at relativistic speed *v* past a dock, what angle between the mast and the deck does a stationary observer on the dock report?

Problem 2 (20 points): Solve the Lorentz transformations for x',y',z',t' in terms of x,y,t,z (Eq. 12.18) to obtain the reverse transformation for x,y,t,z in terms of x',y',z',t' (Eq. 12.19).

Problem 3 (40 points): In reference frame *S*, a static uniform line charge λ extends along the z-axis.

3a (10 points). Write the electric field in *S*, in Cartesian coordinates x,y,z.

3b (10 points). Find the electric field in a frame *S*' that moves with speed *u* in the x-direction with respect to *S*, in terms of x,y,z.

3c (10 points). Express your answer in terms of the *S*' coordinates x',y',z'.

3d (10 points). Express your answer in terms of a vector from the present location of the wire, and the angle θ between that vector and a unit vector in the x' direction. Is the field still radially outward from the instantaneous location of the wire?

Problem 4 (20 points):

4a (10 points). Show that the dot product between the electric and magnetic fields is invariant (i.e. does not change under transformations between reference frames).

4b (10 points). Show that the quantity $(E^2 - c^2 B^2)$ is invariant.